Buying Time: The Basics of Neonatal ECMO

Gregory R Booth, MD
Assistant Professor of Pediatrics
St Louis University at Cardinal Glennon Children’s Medical Center

Outline
- Introduce ECMO terminology
- Neonatal ECMO history
- Indications for Neonatal ECMO
- Neonatal diseases and ECMO
- ECMO Circuit
- Complications of ECMO
- ECMO Outcomes

Terminology - Acronyms
- ECLS = Extracorporeal Cardiovascular Life Support
 - i.e. ECMO, LVAD, Berlin Heart
- ECMO = Extracorporeal Membrane Oxygenation
- ECPR = Extracorporeal Cardiopulmonary Resuscitation
 - Rapid deployment of ECMO for patients not responding to CPR
- ELSO = Extracorporeal Life Support Organization
It Takes a Village

- ECMO Specialists
- NICU Nurses
- Perfusionists
- ECMO Physicians
- Pediatric Surgeons and Cardiothoracic Surgeons

ECMO History

- Dr. John Gibbon, Jr.
 - Developed a heart-lung machine in the 1930s–40s
 - 1st successful open heart surgery using extracorporeal support (1953)

- Dr. Willem Kolff
 - Pioneer in dialysis, worked on the Jarvik Heart
 - 1st to note that oxygen could be transported across a membrane into the blood

- Dr. Theodore Kolobow
 - Silicone membrane gas exchange device (1963)
 - Primary oxygenator used for the next 40+ years

- Dr. Robert Bartlett
 - 1st Neonatal survivor of ECMO after Meconium Aspiration Syndrome (1976)
ECMO History

- Dr. John Gibbon, Jr.
 - Developed a heart-lung machine in the 1930s–40s
 - 1st successful open heart surgery using extracorporeal support (1953)

- Dr. Willem Kolff
 - Pioneer in dialysis, worked on the Jarvik Heart
 - 1st to note that oxygen could be transported across a membrane into the blood

- Dr. Theodore Kolobow
 - Silicone membrane gas exchange device (1963)
 - Primary oxygenator used for the next 40+ years

- Dr. Robert Bartlett
 - 1st Neonatal survivor of ECMO after Meconium Aspiration Syndrome (1974)
First Adult Landmark Study
- Extracorporeal Membrane Oxygenation in Severe Acute Respiratory Failure: A Randomized Prospective Study
- NIH Study on Adults with ARDS
 - 90 patients enrolled
 - Conventional Therapy = 8.3% survival
 - ECMO = 9.5% survival
 - Enrollment terminated early due to lack of increased survival
 - Wide variation in patients, centers, care
 - Effectively ended the use of ECMO in Adults for years

Early Neonatal Success
- ELSO Data Published in 1991
 - 3528 infants treated with estimated 80% mortality without ECMO
 - Survival with ECMO was 83%

What does ECMO Do?
- Provides cardiorespiratory support in patients whose own cardiac and / or respiratory function is inadequate.
- Similar to what a cardiopulmonary bypass circuit provides during cardiac surgery.
- Generally reserved for patients likely to die without it
Buying Time

- ECMO itself doesn’t actually treat – heal – fix anything
 - Provides a bridge to further support
 - Heart transplant
 - EXIT to ECMO to Operative Repair
 - Provides time for an acute process to reverse
 - Pulmonary hypertension
 - Sepsis
 - Allows the body time to rest and recover with less ongoing damage
 - Inflammation
 - Mechanical ventilation injury
 - Cardiac support

ECMO Indications

- Reversible Pathological Process
 - Nature of the disease
 - Length of time already on mechanical ventilation
 - Failure of maximal conventional medical therapy

ECMO Indications

- Reversible Pathological Process
 - Nature of the disease
 - Length of time already on mechanical ventilation
 - Failure of maximal conventional medical therapy
 - Varies patient to patient
 - Varies between diseases
 - Varies center to center
ECMO In a Nutshell

- Take some of the blood out of the body
- Oxygenate it / remove carbon dioxide
- Warm it back to body temperature
- Pump it back into the body

Respiratory Support

- Take some of the blood out of the body
- Oxygenate it / remove carbon dioxide
- Warm it back to body temperature
- Pump it back into the body

Respiratory Support

- Take some of the blood out of the body
- Oxygenate it / remove carbon dioxide
- Warm it back to body temperature
- Pump it back into the body

Cardiac Support
Neonatal Respiratory Diseases

- Meconium Aspiration Syndrome
- Persistent Pulmonary Hypertension
- Hyaline Membrane Disease
- Pneumonia
- Sepsis
- Pulmonary Air Leak
- Congenital Diaphragmatic Hernia

Cardiac Diseases

- Post-operative cardiopulmonary failure
- Post-operative cardiac transplant
- Myocarditis
- Cardiomyopathy

Diseases Not Amenable to ECMO

- Bronchopulmonary Dysplasia
 - Damage is not rapidly reversible

- Congenital Pulmonary Malformations
 - Lymphangiectasia
 - Congenital Surfactant Deficiencies
 - Alveolar Capillary Dysplasia
ECMO Contraindications
- Weight less than 2000 g
- Gestational age less than 34 weeks
- Major Intracranial Hemorrhage
- Significant Coagulopathy
- Congenital Heart Disease

ECMO Indications
- Reversible Pathological Process
 - Nature of the disease
 - Length of time already on mechanical ventilation
- Failure of maximal conventional medical therapy
 - Varies patient to patient
 - Varies between diseases
 - Varies center to center

Cardiorespiratory Support Modalities
- Conventional Mechanical Ventilation
- High Frequency Ventilation
- Surfactant
- Inhaled Nitric Oxide
- Blood Pressure Support
- Antibiotics
- Sedation
Ways to Measure Failure

• A – a gradient
 • Difference between the Alveolar and arterial Oxygen Concentrations
 • Alveolar oxygen = (Barometric pressure – water pressure) * FiO2 – PCO2
 • Arterial oxygen = PaO2
 • Difference = (760 – 47)*1 – PCO2 – PaO2 (on 100% FiO2)
 • 713 – PCO2 – PaO2
 • Typically 15-35 in room air
 • 600s for 4-8 hours ~80% mortality

Ways to Measure Failure

• Oxygenation Index (OI)

\[OI = \frac{MAP \times FiO2 \times 100}{PaO2} \]

• MAP = Mean Airway Pressure
• OI > 40 for > 4 hours ~ 80% mortality

Ways to Measure Failure

• Arterial partial pressure of oxygen (PaO2)
 • Less than 50 for 4 hours

• Cardiovascular Instability
• Failure to Improve
• Disease dependant
Before Going on ECMO

- Echocardiogram
- Head Ultrasound
- Agreement amongst the medical/surgical team that a patient qualifies
- Parental Consent

ECMO Cannulation

- VenoArterial (VA)
 - Two cannulas
 - Arterial – Right Common Carotid Artery to Aortic Arch
 - Venous – Right Internal Jugular Vein to Right atrium
 - Provides cardiac and respiratory support
 - Sacrifices the Right Carotid Artery
 - Can use femoral vessels in larger patients
ECMO Cannulation

VA ECMO Cannula Position

Two Cardiovascular Systems
ECMO Cannulation

- **VenoVeno (VV)**
 - Double lumen cannula inserted via the R Internal Jugular Vein to the RA/IVC
 - Only provides respiratory support
 - Cannula position critical
 - Spares the carotid artery
 - Less risk of arterial emboli

Hirono et al. *Journal of Cardiothoracic Surgery* 2012, 7:36

VV ECMO Cannula Position

ECMO In a Nutshell

- Take some of the blood out of the body
- Oxygenate it / remove carbon dioxide
- Warm it back to body temperature
- Pump it back into the body

ECMO Circuit - VA

ECMO Circuit - VA
Take blood out of the body

Pump it back into the body

Oxygenate it / remove carbon dioxide

Warm it back to body temperature
ECMO Oxygenators

- Silicone Membrane
 - Been in use for 40+ years
 - Very efficient gas exchange
 - Relatively high resistance

- Hollow Fiber
 - Smaller, easier to prime
 - Less clotting
 - Even better gas exchange
 - Low resistance
 - Integrated heat exchanger
Membrane Lung Gas Exchange
Related to differences in partial pressures in gases

Sweep Flow – 100% oxygen

Membrane

Mixed venous blood

\[\text{PO}_2 = 760 \text{ mmHg}, \text{PCO}_2 = 0 \text{ mmHg} \]

\[\text{PO}_2 = 40 \text{ mmHg}, \text{PCO}_2 = 46 \text{ mmHg} \]

Oxygen Driving Pressure (760 - 40) = 720 mmHg

CO\textsubscript{2} Driving Pressure (56 - 0) = 56 mmHg

\[\text{PO}_2 < 760 \text{ mmHg}, \text{PCO}_2 > 0 \text{ mmHg} \]
The Ventilator

- Essentially two vent settings
 - Rest settings
 - High PEEP
 - Long IT
 - Low Rate
 - Low FiO₂
 - Emergency Settings
 - Typically pre-ECMO settings
 - Only used when there is a pump emergency or other reason to remove patient from ECMO

What to Expect while on ECMO

- Lots and lots of blood product transfusions
 - Packed Red Blood Cells
 - Platelets
 - Fresh Frozen Plasma
 - Cryoprecipitate
What to Expect while on ECMO

- Babies require continuous sedation
- Paralysis during Cannulation and Decannulation
- Pain Control
 - Fentanyl drip and boluses
- Agitation relief
 - Versed drip and boluses
- Often times develop tolerance to the sedatives
 - Slow weaning once off ECMO
 - Transition to oral sedation
 - Monitoring for narcotic withdrawal

What to expect while on ECMO

- Nutrition
 - Primarily Parenteral
 - TPN
 - Lipids
 - Maximize the intake as tolerated but limit the volume
 - Enteral feedings are attempted once patient has stabilized

Coagulation Issues

- Blood is exposed to all the tubing, connectors, oxygenator, etc
- Increases the risk for clotting
- Continuous Heparin infusion to limit the development of clots
- Increases the risk for bleeding
 - Intracranial
 - Cannula site
 - Operative sites
 - Hemothorax
- Cannot place IVs, NGs, Foley, etc after heparinized
ECMO Complications

- “ECMO is 95% sheer boredom and 5% sheer terror”

ECMO Complications

- Bleeding
- Infection
- Mechanical Failure
 - Circuit Pieces
 - Circuit Occlusion
 - Cannula
- Emboli
 - Clot
 - Air

How long is an ECMO course?

- Average run length depends on the reason for cannulation
 - Shorter for PPHN, Meconium Aspiration, HMD
 - ~5 – 7 days
 - Longer for CDH, Sepsis
 - ~7 – 14 days
- Can be on ECMO for longer
 - ECMO Circuit has more risk of failure
 - More likelihood of inability to survive without ECMO
Neonatal ECMO Outcomes

- At discharge ECMO survivors often have
 - Decreased tone, weak reflexes
 - Improves by ~4 months
 - Feeding problems
 - Poor growth
 - Oxygen requirement (15%)

Bayley exams at 2 years old
- 65% normal
- 20% suspect
- 15% delayed
 - Cognitive impairment (13%)
 - Motor disability (6%)
 - Seizure disorders (2%)
 - Sensorineural hearing loss (3%)
 - Cortical visual impairment (2%)

At 5 years old
- Mean IQ normal
- 38% with concerns for learning disability
 - Language, Visual/perceptual functioning, behavioral problems