Pediatric Orthopaedic Emergencies

Meg Grisell, MD
Assistant Professor
Saint Louis University
Department of Orthopaedic Surgery
May 15, 2015
Objectives:

• Review presentation, history, outcomes of common pediatric urgent/emergent diagnoses
• Discuss treatment of above
• Help clarify transfer recommendations

Disclosure: I have no financial associations to disclose
What we will cover:

• Supracondylar Humerus Fractures
• Compartment Syndrome
• Neonatal infections
• Open Fractures
Supracondylar Humerus Fractures
SCH Fractures

• 3 – 30% of limb fractures

• Most common elbow injury – 50-70%

• Peak 5-7 years old

• Boys = girls

• Left > right
SCH Fractures

• 98% extension type:
SCH Fractures

- Associated fractures:
 - Distal radius 5-6%
 - Diaphyseal forearm fractures = ↑ compartment syndrome risk

- Obtain forearm imaging in addition to elbow imaging
Gartland classification:

- **Type I:**
 - non-displaced
Gartland classification:

- **Type II:**
 - intact posterior hinge
Gartland classification:

- **Type III:**
 - complete displacement
Gartland classification:

- **Leitch Type IV:**
 - unstable in flexion and extension
 - **DO NOT CHECK FOR THIS**
SCH Fx – Neuro Exam:

• Neurologic deficit at presentation 2-35%:

• Anterior Interosseus Nerve [AIN]:
 • 34.1%
 • Sensory:
 • NONE
 • Motor:
 • Thumb and index DIP joint flexion
 • Beware extension and relax
SCH Fx – Neuro Exam:

• **Median Nerve:**
 • 21.3%

• **Sensory:**
 • Volar hand and fingertips

• **Motor:**
 • Wrist flexion
 • Finger flexion except AIN distribution

• If median n. out, the child cannot sense compartment syndrome
SCH Fx – Neuro Exam:

- **Radial Nerve:**
 - 26.6%

- **Sensory:**
 - Dorsal first web space

- **Motor:**
 - Wrist and finger extension
 - Beware tenodesis effect
SCH Fx – Neuro Exam:

- **Ulnar Nerve:**
 - 15.8%
 - Most common in *flexion* type – 16.6%

- **Sensory:**
 - Small finger & ulnar side of hand

- **Motor:**
 - Small finger flexors
 - Finger adductors/abductors
SCH Fx – Neuro Exam:

• Why do we care? They “all” recover in 6-12 weeks if occur at time of injury

• Vascular exam…
SCH Fx – Vascular Exam:

- 2-20% pulseless at presentation
 - Radial pulse – Doppler if necessary
 - Clinical indicators of perfusion adequacy:
 - Skin temperature
 - Capillary refill
 - Color (pink)
SCH Fx – Vascular Exam:

• Classify vascular status as:
 • Normal
 • Pulseless with a pink hand
 • Dysvascular [pulseless with white hand]
SCH Fx – Vascular Exam:

• Supracondylar humerus fracture with a dysvascular hand is a surgical emergency.

• Perfusion status of the hand at presentation correlates significantly with the ultimate need for vascular repair.
Pulseless SCH Fx – initial tx

- Emergent reduction and re-examination

- Pulse returns

- Pulse does not return
 - Hand pink, perfused
 - Hand not perfused
 - Exploration
Pulseless SCH Fractures
Pulseless SCH Fractures

• What about the patients with nerve injury or palsy??

• Recommend early exploration if associated nerve deficit
SCH Fx – Next step:

• OR

• Reduce and reassess

• Explore if still dysvascular or if unable to reduce fracture
SCH Fractures

• **Summary:**

 • Type I can be splinted and sent to clinic
 • Type II should be evaluated sooner, wide variety of “Type II”
 • Type III should be sent

• Hand perfusion – assess how quickly able to get reduction
Compartment Syndrome
Compartment Syndrome:

- **Definition:**
 - Increased pressure within a closed space leading to decreased perfusion

- **Pathogenesis:**
 - Too much inflow
 - Too little outflow
Compartment Syndrome:

• **Intrinsic causes:**
 • Increase in the contents of a space
 • Bleeding
 • Swelling
 • Infusion or injection

• **Extrinsic causes:**
 • Decrease in the volume of a space
 • Constrictive dressing
 • Tight wound closure
Compartment Syndrome

- **Lower Extremity**
 - Gluteal
 - Thigh
 - Lower leg
 - Foot

- **Upper Extremity**
 - Deltoid
 - Arm
 - Forearm
 - Hand
CS – Causes:

Trauma – cause in 75-85% of cases

Most common pediatric fx associated with CS:

• Femur - Traction to the limb while placing spica
• Forearm
• SCH:
 • Median nerve injuries, vascular injuries
 • Flexion >90 degrees
• Tibial tubercle – anterior compartment
• Tibial shaft – don’t forget the elective osteotomy patient
CS – Causes:
CS – Causes:

• Fractures associated with a nerve injury/palsy:
 • Mask the clinical signs of CS
 • SCH with Median nerve injury
 • Tibia fracture with peroneal nerve injury
 • Distal radius fracture with acute carpal tunnel syndrome
CS – Causes:

- Multiple fractures in one limb:
 - 33% in ipsilateral displaced distal humerus and forearm fractures
 - Obtain stable fixation to enable splint placement and frequent evaluation
CS – Causes:

- Constrictive dressings or casts:
CS – Causes:

Constrictive dressings or casts:
CS – Causes:

• IV infiltration:
 • Especially obtunded or critically ill
 • Intrinsic minus position most common finding in children with CS of hand
IO Access - Pitfalls

• Too deep
 • Through and through

• Too shallow
 • Subcutaneous
 • Subperiosteal
CS – Causes:

- Bleeding or clotting disorders
- Septicemia
- Animal bites
- Burns – circumferential eschar
- Reperfusion injury
CS – Boston experience

• 33 patients:
 • 21% MVC
 • 18% fall from height
 • 15% high-impact sports injury
 • 21% post op:
 • 4 acute fracture fixation
 • 3 elective correctional osteotomy

CS – Boston experience

• 76% in setting of fracture:
 • Lower leg – tibia/fibula
 • Distal radius/wrist
 • Forearm – radius/ulna shaft
 • 40% open

• 15% isolated soft tissue injury

• UE vs LE:
 • 50:50 split upper/lower
CS – Diagnosis: 5 P’s

- **Pain:**
 - “Out of proportion”
 - With passive stretch

- **Parasthesias:**
 - Earliest subjective complaint
 - Reflect increased pressure on the nerve

- **Paralysis**

- **Pallor**

- **Pulselessness – too late**
CS – Diagnosis: Peds

• High-risk pediatric patient:
 • Inability to effectively communicate
 • All pediatric patients
 • Obtunded or comatose
 • Patient with impaired sensation
 • SCI
 • Myelomeningocele
 • Nerve blocks
 • Spasticity
• Compartment syndromes are often missed or diagnosed late in children because of a lack of ability to effectively communicate and difficulty cooperating with an examination while being in pain.

• Is ‘P’ the best letter of the alphabet for kids?
CS – Diagnosis:

• Three A’s
 • Analgesic requirement
 • Can precede change in vascular status by 7 hours (Bae et al)
 • 90% of kids had pain, but only 70% had another “P”
 • Agitation
 • Anxiety

Compartment Syndrome:

- How long do we have?
Compartment Syndrome:

Muscle:

- 3-4 hours:
 - Reversible
- 6 hours:
 - Variable damage
- 8 hours:
 - Irreversible damage
Compartment Syndrome:

- **Nerve:**
 - 2 hours:
 - Lose nerve conduction
 - 4 hours:
 - Neuropraxia
 - 8 hours:
 - Irreversible damage

- Less time in injured tissue
Compartment Syndrome

- Clinical Diagnosis:
 - Don’t need to measure to prove it
 - May need to measure to exclude it
 - Reference for pain (it hurts!)
Compartment Syndrome

- **Needle**
 - 18 gauge
 - Side ported

- Performed within 5 cm of the injury if possible

Side port
Compartment Syndrome

• What Pressure is abnormal?
 – Absolute
 • 30-50 mmHg
 – Relative
 • ΔP ($DBP \cdot Compartment \ pressure$)
 • 30 mmHg

What do we use? ΔP less than 30 mmHg
Compartment Syndrome

• How do we treat it?

• Immediate fasciotomy:
 • Extensile incision!
 • Skin, fascia, muscle
 • Debridement of necrotic tissue if present
Technique

- Transverse fascial incision proximally
- Identify anterior and lateral compartments
Be generous with incision
Complete Release...OR
Aftercare

- Vessel Loops
- NPWT dressings
- Elevation of limb
- Second Look
- Wound closure
 - <10 days ideal
 - Split thickness skin graft
Wound Closure

- STSG
- Delayed primary closure with relaxing incisions
Complications

- Rhabdomyolysis
 - Ischemia for 4 hours - myoglobinuria
- Acute renal failure
 - Hypovolemia + acidemia + myoglobinemia
- Permanent tissue damage
- Infection
- Amputation
Therefore...

Never go to sleep thinking about a compartment syndrome!
Should I?

If You Are Thinking about measuring the compartments…Do It!

Better big incisions than a dead leg!
Neonatal Infections
Neonatal Infections

- 1-3 per 1,000 NICU admissions
- S. aureus, Beta-hemolytic strep, and Gm(-) infections
- Blood cultures (+) 21-47%
- Multiple sites in up to 50% of neonates
- Culture (-) septic arthritis: 43%
Neonatal Infections

• Why are these so challenging?

• We lose our signs/sxs of infection in this population
Neonatal Infections

- Underdeveloped immune system
 - WBC ranges 9K – 30K/mm3 in first week of life
 - Leukopenia (<5K/mm3) suggests infection

- Thermoregulatory dysfunction
 - 15-25% with sepsis are hypothermic

- Not ambulating

- ESR unreliable

- CRP:
 - NPV 95% - if negative, can be fairly sure no infection
 - PPV 60% - elevation suggestive, but not diagnostic
Neonatal Infections

• Diagnosis - XR findings:
 • Joint subluxation or dislocation – laxity
 • Metaphyseal rarefaction
 • Periosteal reaction
Neonatal Infections

- **Diagnosis - U/S findings:**
 - Intra-articular or sub-periosteal abscess

- **Consider contralateral hip**
Neonatal Infections
Neonatal Infections

- Treatment: I&D, abx
- Complications of diagnostic delay:
 - Physeal destruction
 - Limb length discrepancy
 - Osteonecrosis of epiphysis
 - Post-infectious arthritis
 - Epiphyseal separation
Neonatal Infections

• Summary:

• Keep in differential diagnosis
Open Fractures
Open Fractures Classification

• Gustilo and Anderson Type I:
 • Wound < 1 cm
 • Minimal soft tissue damage or contamination

• Vascular supply to the zone of injury intact:
 • Decreases risk factors for infection
 • Devitalized tissue, ischemia, edema
 • Allows for penetrance of host defense mechanisms and antibiotics
Open Fractures Classification

- **Gustilo and Anderson Type II:**
 - Wound > 1 cm, generally < 10 cm
 - No extensive soft tissue damage
 - Wound likely able to be closed primarily

- **Vascular supply to the zone of injury usually intact, but larger wound allows for more and deeper contamination:**
 - Devitalized tissue, ischemia, edema
Open Fractures Classification

• Gustilo and Anderson Type III:
 • Wound > 10 cm
 • Extensive soft tissue damage or contamination

• Sub-classification:
 • A – soft tissue coverage adequate
 • B – likely to need flap assisted coverage
 • C – vascular injury requiring repair
Open Fractures – Treatment

- IV antibiotics ASAP
- I&D in emergency department
- Closed reduction
- Tetanus if not recent
- IV abx for 24 hours
- Home on oral abx to complete 7 days
Open Fractures

• Most can be treated non-operatively
 • Forearm ≠ tibia

• Barnyard injuries

• Evidence of extensive soft tissue damage
Open Fractures

• Summary:

• IV antibiotics ASAP
• Tetanus if not recent
• I&D in emergency department
Questions?

I did not hit you... I simply high-fived your face.
Bibliography

Bibliography

